0
Laboratory and Animal Investigations |

Auditory Detection of Simulated Crackles in Breath Sounds*

Hiroshi Kiyokawa, MD; Matthew Greenberg; Kazuhiko Shirota, MD; Hans Pasterkamp, MD
Author and Funding Information

*From the Department of Pediatrics and Child Health, University of Manitoba, and the Respiratory Acoustics Laboratory, John Buhler Research Centre, Winnipeg, Canada.

Correspondence to: Hiroshi Kiyokawa, Room 510, John Buhler Research Centre, 715 McDermot Ave, Winnipeg, Manitoba R3C 3J7, Canada; e-mail: kiyokawa@cc.umanitoba.ca



Chest. 2001;119(6):1886-1892. doi:10.1378/chest.119.6.1886
Text Size: A A A
Published online

Background: Computerized analysis of breath sounds has relied on human auditory perception as the reference standard for identifying crackles. In this study, we tested the human audibility of crackles by superimposing artificial clicks on recorded breath sounds and having physicians listen to the recordings to see if they could identify the crackles.

Objectives: To establish the audibility of simulated crackles introduced in breath sounds of different intensity, to study the effects of crackle characteristics on their audibility, and to investigate crackle detection within and between observers.

Methods: Fine, medium, and coarse crackles with large and small amplitude were synthesized by computer software. Waveform parameters were based on published characteristics of lung sound crackles. The amplitude for small crackles was defined as just above the threshold of audibility for simulated crackles inserted in sound recorded during breath hold. Simulated crackles were then superimposed on breath sounds recorded at 0 L/s (breath hold), 1 L/s, and 2 L/s airflow. Five physicians listened during playback on two separate occasions to determine if crackles could be heard and to calculate the interobserver and intraobserver variations.

Results: Failed detection of crackles was significantly more common in the following conditions: (1) background breath sounds had higher intensity (2 L/s airflow) compared to lower intensity (1 L/s), (2) crackle type was coarse or medium compared to fine, and (3) crackle amplitude was small compared to large. Both intraobserver and interobserver agreements were high (κ > 0.6).

Relevance: The validation of automated techniques for crackle detection in lung sound analysis should not rely on auscultation as the only reference. Detection of crackles is facilitated when patients take slow, deep breaths that generate little breath sounds.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543