0
Laboratory and Animal Investigations |

An In Vitro Comparison of the Mucoactive Properties of Guaifenesin, Iodinated Glycerol, Surfactant, and Albuterol*

Bruce K. Rubin, MD, FCCP
Author and Funding Information

*From the Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC

Correspondence to: Bruce K. Rubin, MD, FCCP, Professor and Vice Chair for Research, Department of Pediatrics, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1081; e-mail: brubin@wfubmc.edu



Chest. 1999;116(1):195-200. doi:10.1378/chest.116.1.195
Text Size: A A A
Published online

Study objective: The mechanism of action of potential mucoactive agents could relate to effects on the mucociliary apparatus or to direct effects on the secretions. The purpose of this study was to determine the in vitro effects of several agents on the properties of mucus simulants and sputum collected from 30 adults with stable chronic bronchitis.

Design: Sputum or simulants were analyzed untreated and after the addition of the test agent at 1:5 volume to volume ratio for a contact period of 60 s. The concentrations of the agents were as follows: guaifenesin, 20 mg/mL; iodinated glycerol, 3 mg/mL; surfactant (Exosurf; Glaxo Wellcome; Research Triangle Park, NC) containing 13.5 mg of phospholipid per milliliter; albuterol, 5 mg/mL; and amphibian Ringer’s solution (ARS) as a control. Dynamic viscoelasticity and surface mechanical impedance were measured in a magnetic microrheometer. Cohesiveness was measured using a filancemeter. The wettability of a hydrophilic surface was measured using an image processing system. The mucociliary transportability of sputum was timed on the frog palate, and cough transportability (CTR) was measured in a cough machine.

Results: When compared to sputum that had no test agent or ARS added, all agents reduced sputum elasticity G′, with surfactant, albuterol, and guaifenesin significant at p < 0.001. As well, guaifenesin (p = 0.006), albuterol (p = 0.003), and surfactant (p = 0.02) decreased surface mechanical impedance (frictional adhesiveness) compared to untreated sputum. However, there were no significant changes in wettability, hydration, cohesiveness, or CTR with any agent, and there were no significant changes in the properties of sputum or simulants treated with test agents when compared to those treated with ARS. Guaifenesin irreversibly disrupted mucociliary transport when applied directly to the frog palate.

Conclusions: These agents appear to have a minimal direct action on sputum in vitro, suggesting that at the concentrations studied, these agents do not have a significant beneficial effect on either the mucociliary transportability or CTR of chronic bronchitis sputum. However, there could be an effect of some of these agents after oral administration, especially if there is a secondary effect of the agent on an effector cell.


Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543