Articles |

A Role for Potassium Channels in Smooth Muscle Cells and Platelets in the Etiology of Primary Pulmonary Hypertension FREE TO VIEW

E. Kenneth Weir; Helen L. Reeve; Gerhard Johnson; Evangelos D. Michelakis; Daniel P. Nelson; Stephen L. Archer
Author and Funding Information

From the Department of Medicine, Veterans Affairs Medical Center and University of Minnesota, Minneapolis

E. Kenneth Weir, MD, FCCP, VA Medical Center, One Veteran Dr, Minneapolis, MN 55417, email: weirx002@maroon.tc.umn.edu

1998 by the American College of Chest Physicians

Chest. 1998;114(3_Supplement):200S-204S. doi:10.1378/chest.114.3_Supplement.200S
Text Size: A A A
Published online


Plasma serotonin levels are markedly elevated in patients with primary pulmonary hypertension (PPH) and platelet levels of serotonin are low. Furthermore, plasma serotonin levels remain elevated after bilateral lung transplantation, in the absence of any pulmonary hypertension. Dexfenfluramine can cause the anorexigen-induced form of PPH that is clinically and histologically indistinguishable from PPH. We find that dexfenfluramine releases serotonin from platelets and inhibits its reuptake. These observations suggest that serotonin might be involved in, or be a marker for, the mechanism responsible for both forms of PPH. Dexfenfluramine causes inhibition of voltage-sensitive potassium (Kv) channels, membrane depolarization, and calcium entry in pulmonary artery smooth muscle cells and vasoconstriction in isolated perfused rat lungs. We have recently found that dexfenfluramine also inhibits Kv channels in megakaryocytes, the stem cell for platelets. In smooth muscle cells, taken from the pulmonary arteries of PPH patients, Kv channels appear to be dysfunctional. The underlying defect in PPH is likely to be an abnormality of one or more Kv channels in both pulmonary artery smooth muscle cells and platelets. Relatively few patients exposed to dexfenfluramine develop PPH. The factors responsible for susceptibility might be a difference in expression of potassium channels and/or a decrease in the endogenous production of nitric oxide.




Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543