0
Articles |

The Choice of Jet Nebulizer, Nebulizing Flow, and Addition of Albuterol Affects the Output of Tobramycin Aerosols

Allan L. Coates; Clair F. MacNeish; Dale Meisner; Susan Kelemen; Roch Thibert; Jane MacDonald; Elizabeth Vadas
Author and Funding Information

Affiliations: From the Division of Respiratory Medicine, Dorval, Canada,  From the Division of Montreal Children's Hospitald-McGill University Research Institute, Montreal, Canada, and Merck Frosst Canada Inc, Dorval, Canada,  From the Division of Microbiology, Dorval, Canada

Affiliations: From the Division of Respiratory Medicine, Dorval, Canada,  From the Division of Montreal Children's Hospitald-McGill University Research Institute, Montreal, Canada, and Merck Frosst Canada Inc, Dorval, Canada,  From the Division of Microbiology, Dorval, Canada

Affiliations: From the Division of Respiratory Medicine, Dorval, Canada,  From the Division of Montreal Children's Hospitald-McGill University Research Institute, Montreal, Canada, and Merck Frosst Canada Inc, Dorval, Canada,  From the Division of Microbiology, Dorval, Canada


1997 by the American College of Chest Physicians


Chest. 1997;111(5):1206-1212. doi:10.1378/chest.111.5.1206
Text Size: A A A
Published online

Abstract

The use of inhaled antibiotics in the treatment of cystic fibrosis has become widespread despite controversy in the literature as to the appropriate dosing regimen and its effectiveness. This study compared two tobramycin (T) preparations (one with and one without the addition of albuterol) using two different jet nebulizers in order to determine if drug output would be affected. Using calibrated flows from a dry compressed gas source of 6 and 8 L/min as well as a specific compressor (Pulmo-Aide), the Hudson 1720 nebulizer was compared with the newer disposable Hudson 1730. The albuterol preparation used in this study was the Ventolin (albuterol) Respirator Solution (VRS). The nebulizers were charged with (1) 2 mL T (80 mg/2 mL) with 0.5 mL VRS (5 mg/mL) and normal saline solution to make the total nebulizer charge of 3 or 4 mL, or (2) 2 mL T and either 1 or 2 mL normal saline solution. A laser diffraction analyzer (Malvern 2600) was used to determine the aerosol particle size distribution. From the distribution, the respirable fraction, which is the fraction of aerosol that could enter and remain in the lungs, was calculated. For all solutions and each particular flow, the Hudson 1730 had a larger respirable fraction of T. The addition of VRS lowered the surface tension of the solution in the nebulizer and resulted in a greater output of T. This effect was most apparent for the 3-mL volume fills of the Hudson 1720. The greatest differences were between the 3-mL nebulizer charges of T using the Hudson 1720 driven by a flow of 6 L/min, which produced 8 mg of T in the respirable fraction, compared with 35 mg produced by the Hudson 1730 driven by a flow of 8 L/min. These results suggest that different nebulizers, different nebulizer solutions, and different techniques of nebulization may result in very different amounts of T aerosol output in the respirable fraction.


Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543