0
Recent Advances in Chest Medicine |

Update in the Understanding of Respiratory Limitations to Exercise Performance in Fit, Active Adults

Jerome A. Dempsey, PhD; Donald C. McKenzie, MD, PhD; Hans C. Haverkamp, PhD; Marlowe W. Eldridge, MD
Author and Funding Information

*From the University of Wisconsin (Drs. Dempsey and Eldridge), Madison, WI; the University of British Columbia (Dr. McKenzie), Vancouver, BC, Canada; and Johnson State College (Dr. Haverkamp), Johnson, Vermont.

Correspondence to: Jerome A. Dempsey, PhD, University of Wisconsin–Madison, 4245 MSC, 1300 University Ave, Madison, WI 53706; e-mail: jdempsey@wisc.edu


The authors have reported to the ACCP that no significant conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.

Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (www.chestjournal.org/misc/reprints.shtml).


Chest. 2008;134(3):613-622. doi:10.1378/chest.07-2730
Text Size: A A A
Published online

This review addresses three types of causes of respiratory system limitations to O2 transport and exercise performance that are experienced by significant numbers of active, highly fit younger and older adults. First, flow limitation in intrathoracic airways may occur during exercise because of narrowed, hyperactive airways or secondary to excessive ventilatory demands superimposed on a normal maximum flow-volume envelope. Narrowing of the extrathoracic, upper airway also occurs in some athletes at very high flow rates during heavy exercise. Examination of the breath-by-breath tidal flow-volume loop during exercise is key to a noninvasive diagnosis of flow limitation and to differentiation between intrathoracic and extrathoracic airway narrowing. Second exercise-induced arterial hypoxemia occurs secondary to an excessively widened alveolar-arterial oxygen pressure difference. This inefficient gas exchange may be attributable in part to small intracardiac or intrapulmonary shunts of deoxygenated mixed venous blood during exercise. The existence of these shunts at rest and during exercise may be determined by using saline solution contrast echocardiography. Finally, fatigue of the respiratory muscles resulting from sustained, high-intensity exercise and the resultant vasoconstrictor effects on limb muscle vasculature will also compromise O2 transport and performance. Exercise in the hypoxic environments of even moderately high alitudes will greatly exacerbate the negative influences of these respiratory system limitations to exercise performance, especially in highly fit individuals.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
Guidelines
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543