0
Editorials: Point and Counterpoint |

POINT: Should Acute Fluid Resuscitation Be Guided Primarily by Inferior Vena Cava Ultrasound for Patients in Shock? Yes FREE TO VIEW

Gregory A. Schmidt, MD, FCCP
Author and Funding Information

FINANCIAL/NONFINANCIAL DISCLOSURES: None declared.

Division of Pulmonary Diseases, Critical Care, and Occupational Medicine, Department of Internal Medicine, University of Iowa, Iowa City, IA

CORRESPONDENCE TO: Gregory A. Schmidt, MD, FCCP, Division of Pulmonary Diseases, Critical Care, and Occupational Medicine, Department of Internal Medicine, 200 Hawkins Dr, C33-GH, University of Iowa, Iowa City, IA 52246


Copyright 2016, American College of Chest Physicians. All Rights Reserved.


Chest. 2017;151(3):531-532. doi:10.1016/j.chest.2016.11.021
Text Size: A A A
Published online

The inferior vena cava (IVC), a capacitance reservoir leading directly to the heart, encodes valuable hemodynamic information. When examined throughout the respiratory cycle, dynamic changes in the IVC diameter (ΔIVC) can guide fluid resuscitation,, akin to other dynamic predictors such as pulse pressure variation and respiration-related changes in stroke volume, arterial flow velocity, and ventricular outflow tract velocity time integrals. During positive pressure ventilation of the passive patient, inspiration raises the pleural, juxtacardiac, and right atrial pressures much more than abdominal pressure, transiently depressing venous return to the heart and tending to distend the IVC. The magnitude of this cardiopulmonary interaction depends on IVC compliance, the rise in pleural pressure, and whether the heart is on the steep portion of the cardiac function curve.

For passively ventilated patients, four studies have shown a strong correlation between ΔIVC and the change in cardiac output following a fluid bolus, with typical area under the receiver operating characteristic curve of nearly 90%.,,, When combined in a meta-analysis, the diagnostic OR was 30.8, illustrating excellent test performance. Thus, significant dilation of the IVC during tidal ventilation accurately predicts fluid responsiveness (FR) as long as the following conditions hold: (1) the patient is receiving passive ventilation; (2) tidal volume is 8 to 12 mL/kg; and (3) there is an absence of acute cor pulmonale.

For spontaneously breathing patients (including those triggering the ventilator), inspiration tends to collapse the IVC, and the physiology explaining ΔIVC is rather different. Inspiration lowers the pleural pressure (the degree depending on effort, lung compliance, and airways resistance), which lowers the right atrial and ventricular pressures (depending on the compliance of those chambers). At the same time, inspiration raises abdominal pressure. This scenario produces a gradient tending to shift blood from the abdominal IVC to the thorax, but the magnitude of this effect is conditioned by the absolute level of right atrial pressure and IVC compliance. IVC collapse can be seen whenever inspiratory effort is large (eg, with acute asthma or other forms of respiratory failure), not only when the circulation is fluid responsive. For this reason, ΔIVC during spontaneous breathing still predicts FR (diagnostic OR, 13.2) but with less confidence than in passively ventilated patients.,,

In light of the complex underlying physiology, it should be self-evident that IVC diameter and its respiratory variation will never serve as a one-size-fits-all test to guide fluid resuscitation; that would be asking too much. Instead, we should judge its usefulness the way we do other diagnostic tests: when pretest probability and clinical context are integrated, does IVC ultrasound significantly alter the posttest probability of fluid response? Considered this way, the answer is a resounding “yes.”

Alternative approaches to fluid resuscitation are seriously flawed. Static predictors such as central venous and wedge pressures are little better than a coin toss.,, Dynamic predictors such as pulse pressure variation and passive leg raising (PLR) are accurate (assuming all of the conditions for validity are met) but require an arterial catheter (pulse pressure variation, stroke volume variation) or significant echocardiographic expertise (velocity time integrals of the left or right ventricular outflow tracts). PLR has the advantage of being accurate even during spontaneous breathing, which is ΔIVC’s weakest link. Nevertheless, it is cumbersome to perform (often using a specialized bed) and requires some measure of effect, such as obtaining an apical five-chamber view to estimate the velocity time integral. In carefully conducted clinical trials, investigators can obtain adequate five-chamber views in both the semi-upright and PLR positions without introducing large measurement errors, but I doubt this approach can be utilized as part of usual care.

In practice, using IVC ultrasound to guide fluid resuscitation has significant advantages. The subcostal longitudinal view is readily obtainable in > 90% of patients; it is one of the easiest point-of-care ultrasound techniques to master (Table 1); and the entire examination takes < 3 min. It can be repeated at will (eg, after each fluid bolus or clinical change), is noninvasive, and can be integrated into a more comprehensive ultrasound examination that includes goal-directed echocardiography to exclude tamponade, cardiogenic shock, cor pulmonale, or major valvular lesion; lung ultrasound to rule out tension pneumothorax or diffuse anterior B lines; and (when appropriate) abdominal imaging. Applied this way, point-of-care ultrasound has tremendous value for many patients diagnosed with shock.

Table Graphic Jump Location
Table 1 Method for Measuring ΔIVC

ΔIVC = dynamic changes in the inferior vena cava (IVC) diameter.

Supplementary Data

Barbier C. .Loubières Y. .Schmit C. .et al Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30:1740-1746 [PubMed]journal. [PubMed]
 
Feissel M. .Michard F. .Faller J.P. .Teboul J.L. . The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30:1834-1837 [PubMed]journal. [PubMed]
 
Michard F. .Boussat S. .Chemla D. .et al Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134-138 [PubMed]journal. [CrossRef] [PubMed]
 
Reuter D.A. .Felbinger T.W. .Schmidt C. .et al Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med. 2002;28:392-398 [PubMed]journal. [CrossRef] [PubMed]
 
Brennan J.M. .Blair J.E. .Hampole C. .et al Radial artery pulse pressure variation correlates with brachial artery peak velocity variation in ventilated subjects when measured by internal medicine residents using hand-carried ultrasound devices. Chest. 2007;131:1301-1307 [PubMed]journal. [CrossRef] [PubMed]
 
Feissel M. .Michard F. .Mangin I. .Ruyer O. .Faller J.P. .Teboul J.L. . Respiratory changes in aortic blood flow velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119:867-873 [PubMed]journal. [CrossRef] [PubMed]
 
Machare-Delgado E. .Decaro M. .Marik P.E. . Inferior vena cava variation compared to pulse contour analysis as predictors of fluid responsiveness: a prospective cohort study. J Intensive Care Med. 2011;26:116-124 [PubMed]journal. [CrossRef] [PubMed]
 
Moretti R. .Pizzi B. . Inferior vena cava distensibility as a predictor of fluid responsiveness in patients with subarachnoid hemorrhage. Neurocrit Care. 2010;13:3-9 [PubMed]journal. [CrossRef] [PubMed]
 
Zhang Z. .Xu X. .Ye S. .Xu L. . Ultrasonographic measurement of the respiratory variation in the inferior vena cava diameter is predictive of fluid responsiveness in critically ill patients: systematic review and meta-analysis. Ultrasound Med Biol. 2014;40:845-853 [PubMed]journal. [CrossRef] [PubMed]
 
Brun C. .Zieleskiewicz L. .Textoris J. .et al Prediction of fluid responsiveness in severe preeclamptic patients with oliguria. Intensive Care Med. 2013;39:593-600 [PubMed]journal. [CrossRef] [PubMed]
 
Airapetian N. .Maizel J. .Alyamani O. .et al Does inferior vena cava respiratory variability predict fluid responsiveness in spontaneously breathing patients? Crit Care. 2015;19:400- [PubMed]journal. [CrossRef] [PubMed]
 
Muller L. .Bobbia X. .Toumi M. . and the AzuRea Groupet al Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use. Crit Care. 2012;16:R188- [PubMed]journal. [CrossRef] [PubMed]
 
Eskesen T.G. .Wetterslev M. .Perner A. . Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness. Intensive Care Med. 2016;42:324-332 [PubMed]journal. [CrossRef] [PubMed]
 
Osman D. .Ridel C. .Ray R. .et al Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35:64-68 [PubMed]journal. [CrossRef] [PubMed]
 
Kumar A. .Anel R. .Bunnell E. .et al Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32:691-699 [PubMed]journal. [CrossRef] [PubMed]
 
Monnet X. .Marik P. .Teboul J.L. . Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016;42:1935-1947 [PubMed]journal. [CrossRef] [PubMed]
 
Monnet X. .Rienzo M. .Osman D. .et al Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34:1402-1407 [PubMed]journal. [CrossRef] [PubMed]
 
Lichtenstein D.A. . BLUE-protocol and FALLS-protocol: two applications of lung ultrasound in the critically ill. Chest. 2015;147:1659-1670 [PubMed]journal. [CrossRef] [PubMed]
 

Figures

Tables

Table Graphic Jump Location
Table 1 Method for Measuring ΔIVC

ΔIVC = dynamic changes in the inferior vena cava (IVC) diameter.

References

Barbier C. .Loubières Y. .Schmit C. .et al Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30:1740-1746 [PubMed]journal. [PubMed]
 
Feissel M. .Michard F. .Faller J.P. .Teboul J.L. . The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30:1834-1837 [PubMed]journal. [PubMed]
 
Michard F. .Boussat S. .Chemla D. .et al Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134-138 [PubMed]journal. [CrossRef] [PubMed]
 
Reuter D.A. .Felbinger T.W. .Schmidt C. .et al Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med. 2002;28:392-398 [PubMed]journal. [CrossRef] [PubMed]
 
Brennan J.M. .Blair J.E. .Hampole C. .et al Radial artery pulse pressure variation correlates with brachial artery peak velocity variation in ventilated subjects when measured by internal medicine residents using hand-carried ultrasound devices. Chest. 2007;131:1301-1307 [PubMed]journal. [CrossRef] [PubMed]
 
Feissel M. .Michard F. .Mangin I. .Ruyer O. .Faller J.P. .Teboul J.L. . Respiratory changes in aortic blood flow velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119:867-873 [PubMed]journal. [CrossRef] [PubMed]
 
Machare-Delgado E. .Decaro M. .Marik P.E. . Inferior vena cava variation compared to pulse contour analysis as predictors of fluid responsiveness: a prospective cohort study. J Intensive Care Med. 2011;26:116-124 [PubMed]journal. [CrossRef] [PubMed]
 
Moretti R. .Pizzi B. . Inferior vena cava distensibility as a predictor of fluid responsiveness in patients with subarachnoid hemorrhage. Neurocrit Care. 2010;13:3-9 [PubMed]journal. [CrossRef] [PubMed]
 
Zhang Z. .Xu X. .Ye S. .Xu L. . Ultrasonographic measurement of the respiratory variation in the inferior vena cava diameter is predictive of fluid responsiveness in critically ill patients: systematic review and meta-analysis. Ultrasound Med Biol. 2014;40:845-853 [PubMed]journal. [CrossRef] [PubMed]
 
Brun C. .Zieleskiewicz L. .Textoris J. .et al Prediction of fluid responsiveness in severe preeclamptic patients with oliguria. Intensive Care Med. 2013;39:593-600 [PubMed]journal. [CrossRef] [PubMed]
 
Airapetian N. .Maizel J. .Alyamani O. .et al Does inferior vena cava respiratory variability predict fluid responsiveness in spontaneously breathing patients? Crit Care. 2015;19:400- [PubMed]journal. [CrossRef] [PubMed]
 
Muller L. .Bobbia X. .Toumi M. . and the AzuRea Groupet al Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use. Crit Care. 2012;16:R188- [PubMed]journal. [CrossRef] [PubMed]
 
Eskesen T.G. .Wetterslev M. .Perner A. . Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness. Intensive Care Med. 2016;42:324-332 [PubMed]journal. [CrossRef] [PubMed]
 
Osman D. .Ridel C. .Ray R. .et al Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35:64-68 [PubMed]journal. [CrossRef] [PubMed]
 
Kumar A. .Anel R. .Bunnell E. .et al Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32:691-699 [PubMed]journal. [CrossRef] [PubMed]
 
Monnet X. .Marik P. .Teboul J.L. . Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016;42:1935-1947 [PubMed]journal. [CrossRef] [PubMed]
 
Monnet X. .Rienzo M. .Osman D. .et al Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34:1402-1407 [PubMed]journal. [CrossRef] [PubMed]
 
Lichtenstein D.A. . BLUE-protocol and FALLS-protocol: two applications of lung ultrasound in the critically ill. Chest. 2015;147:1659-1670 [PubMed]journal. [CrossRef] [PubMed]
 
NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543